

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

DISCIPLINE SPECIFIC ELECTIVES (DSE-2)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Quantum and Spintronics Devices	4	3	-	1	Class XII passed with Physics + Mathematics/Applied Mathematics + Chemistry OR Physics + Mathematics/Applied Mathematics + Computer Science/Informatics Practices	Semiconductor Devices(DSC 3, Sem I), Engineering Mathematics (DSC 7, Sem III)

Learning Objectives

The objective of the course is to make the students understand the inadequacies of Classical Physics and know the basic postulates of Quantum Mechanics. Spintronics, a portmanteau meaning “spin transport electronics”, where both charge and spin degrees of freedom of electrons are employed simultaneously to produce a device with new functionality, is a fascinating and promising field of research. It has the potential to revolutionize the field of electronics. Two physical bases of Spintronics, i.e., GMR and TMR have already been commercialized in read heads of the hard disk drive. It is extremely important and necessary to have a clear concept of spintronics so that students get exposure to such modern-day cutting-edge technology. Students will also learn general concepts about Spin-based quantum computing which is a leading technology for the realization of scalable quantum computers and other sectors too.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the limitation of classical physics and basic concepts of quantum Mechanics
- Understanding the concept of spintronics and spin-orbit
- Comprehend the spin relaxation and transport
- Design the spintronics devices using the laws
- Know the basic principles of various spintronic devices (sensors, memories, etc.)

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

SYLLABUS OF ELDSE-3B

Total Hours- Theory: 45 Hours, Practicals: 30 Hours

UNIT – I (11 Hours)

Introduction to Quantum Mechanics: Inadequacies of Classical physics, Wave-particle duality, de Broglie waves, Schrödinger equation, expectation values, Uncertainty principle.

Basics of Quantum Mechanics: Solutions of the one-dimensional Schrödinger equation for a free particle, particle in a box, particle in a finite well. Reflection and transmission by a potential step and by a rectangular barrier. Basic understanding of the Linear algebra of quantum computing.

UNIT – II (12 Hours)

History & Background of spintronics : GMR, Datta-Das, Spin relaxation, Spin injection, Spin detection

Electron Spin in Solids: Quantum Mechanics of spins, Pauli equation, Spin-Orbit coupling, Zeeman splitting, Current density, Magnetization, Bloch states with SO coupling, Electronic structure of GaAs, Dresselhaus and Rashba spin splitting, Optical orientation and spin pumping, Stern-Gerlach experiments with electron spins, Detection of free electron spin

UNIT – III (11 Hours)

Transport in magnetic materials and Spin injection: Materials for spin electronics, Nanostructures for spin electronics, Spin-polarized transport, Electrochemical potential, Spin accumulation, Spin diffusion, FN junction, Rashba formalism of linear spin injection, Equivalent circuit model, Silsbee-Johnson spin-charge coupling

UNIT – IV (11 Hours)

Spintronic Devices: Datta-Das spin-FET, P-N junctions, Magnetic bipolar diode, Magnetic bipolar transistor, Magnetic tunneling devices, MRAM, New memory technologies

Practical component (if any) – Quantum and Spintronics Devices

Hardware and Simulation-Based Lab Experiments

(Scilab/MATLAB/SPICE/Verilog A)

Learning outcomes

The Learning Outcomes of this course are as follows:

- Perform lab experiment on splitting of atomic energy levels under magnetic field by Zeeman Effect
- Perform simulations to understand spin phenomenon using transport and magnetic elemental modules using Scilab/MATLAB/SPICE/Verilog A

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

- Extending use of elemental modules to build Spin Circuit Models for complex structures

LIST OF PRACTICALS (Total Practical Hours – 30 Hours)

1. Study of Zeeman Effect

Simulation using Transport and Magnetic Elemental Modules to understand Spin Phenomenon and build Spin Circuit Models using Scilab/MATLAB/SPICE/Verilog A (<https://nanohub.org/groups/spintronics>) for the following

- 2. Non Magnet
- 3. Ferromagnet
- 4. Magnetic Tunnel Junction
- 5. Rashba Spin Orbital
- 6. Giant Spin Hall Effect
- 7. Spin Pumping
- 8. Pure Spin Conductor
- 9. Magnetic Coupling

Note: Students shall sincerely work towards completing all the above listed practicals for this course. In any circumstance, the completed number of practicals shall not be less than eight.

Essential/recommended readings

- 1. Beiser, Concepts of Modern Physics, McGraw-Hill Book Company (1987)
- 2. Sadamichi Maekawa, —Concepts in Spin Electronics, Oxford University Press (2006).
- 3. Bandyopadhyay S, Cahay M. Introduction to Spintronics. CRC press; 2015.

Suggestive readings

- 1. Isaac Chuang and Michael Nielsen, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
- 2. Supriyo Bandyopadhyay and Marc Cahay, Introduction to Spintronics, CRC press, 2008

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.